说髓鞘质单调是对它的赞美。髓鞘质不光看着单调,它的无趣更是令人难以置信、叹为观止,而且死不悔改。如果把大脑的构造比做《银翼杀手》(Blade Runner)里的城市风光:神经元结构光芒四射、灯光摇曳,脉冲电流呼啸而过,那么髓鞘质的角色就好比是简陋的沥青,整齐划一,有点呆板的市政基础设施。髓鞘质由这些结构组成,一层称为磷脂膜的普通物质和一层厚厚的脂肪,像绝缘胶布那样包裹着神经纤维,以防止电流脉冲外泄。它的柱状体外形,毫无诗意,正如一位神经学家所说的“香肠状”,而且看起来确实挺像。
一个世纪以来,研究人员一直把重点放在神经元和突触上,而不是那似乎有点呆板的绝缘体。事实证明,研究人员是对的——神经元和突触确实可以解释几乎所有的心智现象:记忆、情绪、肌肉控制、感官知觉等等。但有一个关键问题,神经元无法给出解释:为什么人们学习复杂技能需要如此长的时间?
相关研究越来越多,逐渐拼出一幅新画面。髓鞘质尽管只是基础设施,却拥有功能强大的节点:在大脑这个辽阔的大都市里,髓鞘质悄无声息地把窄巷子变成了宽阔、可供飞速奔驰的超级公路。神经系统这辆客车曾经只能承受两英里的时速,有了髓鞘质之后,就能以每小时 200英里的速度呼啸而去,无刺激反应时间(指两次信号之间的等待时间)下降了 0倍。提高的速度和下降的无刺激反应时间结合在一起,整体信息处理能力增加了 000倍——堪称“宽带”。更可贵的是,髓鞘质能够调控速度,偶尔减慢信号传递速度,从而确保它们在最佳时刻到达突触。把握时间点至关重要。
菲尔茨博士说:“信号必须以合适的速度传输,在正确的时刻到达,而髓鞘质正是大脑控制传输速度的方法。 ”
比如说,老虎伍兹的高尔夫挥杆动作。传入的几股脉冲必须几乎同时到达——有点像两个小人试图一起推开一扇沉重的大门。时间间隔要求在 毫秒以内,约是蜜蜂扇动一次翅膀所需时间的一半。如果几股脉冲到达时间前后相差大于 毫秒,大门依然紧闭,那关键的第三条神经元就不会启动,高尔夫球就飞进了深草区。
虽然目前为止,准确的最优化理论机制仍然是个传说 ,但是所有的发现拼在一起,呈现出一个如此优雅的流程,达尔文都为之欢欣鼓舞:释放神经信号促进髓鞘质生长,髓鞘质控制脉冲速度,脉冲速度就是技能。
菲尔茨博士说:“突触的变化仍然是学习过程的关键,但髓鞘质对如何提高学习效率起着巨大的作用。 ”
髓鞘质理论令人印象深刻。但是,驻留在我脑海中的是它接下来向我们呈现的一个场景:处于精深练习中的大脑变化。我们沿着狭窄的大厅,来到一位同事的办公室,看到的景象仿佛凡尔纳( Jules Verne)笔下的海底世界:
在一片漆黑中,泛着绿光的鱿鱼状物质伸出触角指向细长的纤维。菲尔茨告诉我,这些鱿鱼状物质是少突胶质细胞——按实验室里的行话叫磷酸寡核苷酸,生成髓鞘质的细胞。一旦神经纤维被启动,磷酸寡核苷酸就感觉得到,牢牢地吸附住纤维并开始包裹纤维。磷酸寡核苷酸挤压自己的细胞质时,每个触角都时而卷曲,时而伸展,直到留下一层薄如蝉翼的髓鞘质。髓鞘质仍然附着在磷酸寡核苷酸上,开始一层层地包裹神经纤维,严丝合缝,巧夺天工,然后在两端旋转收缩,活脱脱一根香肠,最后沿着纤维一圈圈缩紧,就像旋紧螺帽。
菲尔茨博士说:“这是世界上最复杂、最精致的细胞自我分裂过程之一。这个过程非常缓慢,每一层都要绕神经纤维四五十次,需要几天甚至几周时间。想象一下,先在其中一个神经元上完成这个过程,接着是拥有成千上万条这样的神经纤维的整个神经回路。这就好像给横穿大西洋的电缆裹上绝缘体。 ”
一言以蔽之:每次进行挥杆、弹吉他和弦、下象棋开局这些技能的精深练习时,我们正在缓慢地给线路增加带宽。那些绿色小触角感知到释放的信号,遂伸向神经纤维。吸附,然后挤压,再包裹一层,加厚外皮。线路上多裹一点绝缘体,技能回路的带宽和精确性就增加一点,表现出来的就是技能和反应速度上的些微提升。犯错绝不是可有可无的——从神经学的角度来说,这是必须的:要想使技能回路达到最佳状态,必须先找到次佳位置;你必须犯错误,并关注这些错误;你得慢慢地教育自己的回路。你还必须持续开启那个回路(练习)以保持髓鞘质运作正常。毕竟,髓鞘质是活体组织。